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the framework of the Parisi solution 
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Abstract. For the Parisi solution of an infinite-ranged Ising spin glass we derive a 
self-consistent system of equations which determine the free energy, magnetisation and 
the function q ( x )  for H 2 0 .  Using these equations we prove the existence of massless 
modes and carry out a comparison with results of Sompolinsky’s dynamic approach. 

1. Introduction 

In the framework of the Edwards-Anderson mean field theory (Edwards and Anderson 
1975) it is supposed that the replica symmetry is unbroken. Unfortunately, this mean 
field theory gives a negative entropy at low temperatures for the SK model (Sherrington 
and Kirkpatrick 1975, 1978) which can be solved in the mean field approximation. 
Investigating the stability of the SK solution below the transition temperature ( T J ,  
de Almeida and Thouless (1978, hereafter referred to as AT) have found that the 
replica symmetry is broken in the spin glass phase at low magnetic field. A new mean 
field theory for spin glasses has been proposed by Parisi (1979, 1980a, b, c). In the 
framework of the Parisi solution the local order parameter is a function ( q ( x ) )  defined 
on the interval [0, 13. If the replica symmetry is unbroken, q ( x )  becomes constant 
and we recover the Edwards-Anderson mean field theory. If the replica symmetry 
is broken, as happens in the spin glass phase at low magnetic fields, q ( x )  is x dependent. 
The function q ( x )  can be obtained by maximising an effective free energy F [ q ( x ) ] :  

F = max F[q  ( x  )]. (1) 

The expansion of the functional F [ q ( x ) ]  in powers of q ( x )  may be obtained for T 
near T,. Retaining only the term of order q 4 ( x )  in F [ q ( x ) ] ,  Parisi (1980a, c) has found 
the function q ( x )  for T close to T,. At low temperatures, however, the exact functional 
F [ q ( x ) ]  is unknown and so the results obtained by Parisi (198Oa, b, c) for some 
magnetic and thermodynamic properties of spin glasses are only approximate. 

In this paper we derive self-consistent equations that enable one to obtain the 
function q ( x ) ,  F and magnetisation (m) by a self-consistent procedure at all tem- 
peratures T < T, at non-zero magnetic field ( H ) .  We give a solution of these equations 
for T close to T, at zero magnetic field ( 5  2). In B 3 we prove the existence of massless 
modes. In B 4 the Parisi solution is compared with results of the dynamic approach 
(Sompolinsky 1981). 

q ( x  1 
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2. Equations of state 

In the SK model the free energy per spin ( F )  is given by 

where the indices a,P run from 1 to n and the trace is over the 2“ values of the 
Sa = k l  and QaP is an n x n matrix, identically zero on the diagonal (Qaa = 0). Parisi 
(1979) proposed the following parametrisation of the matrix Q a p :  

Q a p  = 4i if I ( a / m , )  #I(P/mi)  and I (a/mi+d = I ( P / m i + d  (3) 
where 4i(i  = 0, K )  are real numbers and mi(i = 1, K )  are integers such that miillmi 
is an integer with mo = 1 and mKcl  = n ;  I ( x )  is an integer valued function: its value 
is the smallest integer greater than or equal to x. For n = 0 the function 4(x)  is defined 
by 

4(x)  =4i for mi >x  >mi+l ( i  = 0 ,  K ) .  (4) 
Introducing the quantity 

we find in the limit n + 0 

Using a simple method suggested by Duplantier (198 l ) ,  the evaluation of equations 
( 5 )  and (6)  can be reduced to a solution of some differential equations. For the free 
energy F, the magnetisation m, and the function 4(x)  we obtain 

The functions f ( y ,  h )  and q ( y ,  h ) ,  y E [0, 11, satisfy equations 

f = - $ 2 c j [ f f l +  y (f‘)2], 

= - i ~ 2 Q [ c p t f + 2 y f ’ c p ’ ] ,  

f‘ = af/ah, f = a f / a y ,  with the boundary conditions 

f ( 1 ,  h )  = ln(2 cosh h ) ,  cp(1, h )  = tanhh. 
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It is easy to show that q ( y ,  h )  =f‘ (y ,  h ) .  The function &(x, h ) ,  y E EO, x], satisfies 
equation (1 1) with the boundary condition 

rClx(x,h)=q2(x,h). 

A brief derivation of equations (8)-( 11) is presented in the appendix. The equations 
(7) and (10) were obtained by Parisi (1980b)t. We omit details of our solution of 
equations (8)-(11) and now present results for the case H = O  and T close to T,= 
1 ( t = l - T / T , < <  1 ) :  

x1 < x  c 1,  
a lx  + 0 ( x 4 ) ,  o < x  s x 1 ,  

q ( x )  = { ( I ) ,  

q ( 1 )  = t + t 2 - t 3  + o(t4), (12) 

a = :( 1 + 3t)  + 0 ( t 3 ) ,  x1  =2t-4r2+10t3+O(t4) .  

It is interesting to compare our results (12) with the Sompolinsky (1981) results 
obtained from the dynamic approach. In the framework of the dynamic approach the 
Parisi solution q(x) corresponds to A(x) = - x ~ ( x ) .  The use of equation (12) yields 
the same relation 

( 1 + 3 t ) A ( ~ ) + q ~ ( ~ ) = t ~ + 2 t ~  

as that obtained by Sompolinsky (1981). 

3. Massless modes 

In our previous paper (Goltsev 1983) we studied the stability of the Parisi solution 
and obtained the result that the smallest eigenvalue (Amin) of the third family eigen- 
values (De Dominicis and Kondor 1983) of the matrix of coefficients (a2F/aQapaQy,,) 
governing fluctuations about the Parisi solution is equal to 

Ami,  = 2q( l )  - 1 + T2 -(S,SpS,S,), (13) 
where the replica indices a, p, y and v ( a # /3 # y # v )  satisfy the condition: QaP = 
Q,, = Q,, = Q p ,  = Q p ,  = Q,, = q (1) .  Hereafter the correlation function (S,SpS,Ss,) in 
(13)  will be written as (S,SpS,Ss,)l. An inequality 

(14) 
should be satisfied for the stability of the Parisi solution. For a full stability analysis 
it is necessary to prove that eigenvalues of first and second families (De Dominicis 
and Kondor 1983) are greater than or equal to zero. In the limit n + 0 the right-hand 
side of (14) may be written in the form (Goltsev 1983) 

T2 3 1 - 2q (1)  + (SaSpS,Sv)l 

- 
1 -2q( l )+(s , s , s , s”) ,  =[5(0, P H + P z J q ( O ) ) l ,  

((1,  h )  = sech4 h. 

where the function [(y, h )  satisfies equation (11) with the boundary condition 

(15) 
To prove inequality (14) we consider the function ~ ( x )  defined by 

t Equations (8)-(11) have also been derived independently by de Almeida and Lage (1983). 
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where the function xX (y, h ) ,  y E [0, XI, obeys equation (1 1) with the boundary condition 

xx(x,h)=cp‘(x,h). (17) 

Using the recursion relation (A2), we find 

x (x )=P( l -q (1 )+A(x) )  (18) 

where A(x) = - x c j ( x ) ,  A(1) = 0. As follows from Sompolinsky (1981) the function 
~ ( x )  is the local susceptibility measured at the frequency U ,  = t i’ .  A calculation of 
i ( x )  for x = 1 from equations (16) and (18) yields 

1 = P 2 [ 4 ( 0 ,  PH + P z J q o ) l z  
or, equivalently, 

T 2  = 1 - 2q (1) + (S,S&,.S,)l. 

Therefore A m i n  = 0 and there are massless modes. 

we calculate &,by ( x ,  h)/ay for y = x = 0 and obtain 
Using equations (9) and (1 1) and the boundary condition for the function i,bx(y, h ) ,  

1 = [ ( X O ( O ,  PH +Pz  Jqo0))21z. 
This relation yields that for H = 0 the static (zero field) susceptibility x ( 0 )  = 1. 

4. Comparison with the Somopolinsky results 

Now we derive the Sompolinsky (1981) results from equations (8)-(11). Using the 
relation cp(x,  h )  =f‘(x, h )  the differential equation (11) for ~ ( x ,  h )  may be reduced to 
an integral equation: 

where 

Substituting h = Hx (0, { z } )  we obtain 

cp ( x ,  Hx (0, { z  1)) 

Comparing (22) with equation (15) of the Sompolinsky paper we find that 
p(x, Hx(O, ( 2 ) ) )  is equal to a value of the local magnetisation ( m , { z } )  which remains 
frozen at the time scale t,. H1(O,{z}) is a time-persistent effective field and t is a 
time-persistent noise, (z(x)z(x’))  = 6(x-  x’)q(x). 
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For Tx ( y ,  h ) we have 

The use of equations (9) and (22) yields q ( x )  = ( m t ) I r ) .  Relation (19) may be written 
in the form 

This relation coincides with the condition of marginal dynamical stability which has 
been derived by Sompolinsky (1981). 

Therefore all the main results of the Sompolinsky dynamic approach may be 
obtained from the Parisi solution given by equations (7)-( 11). There is one distinction: 
in the framework of the Sompolinsky dynamic approach the functions q ( x )  and A ( x )  
are supposed to be monotonous functions on the interval [0,1] while for the Parisi 
solution there are flat regions ( x  between 0 and x o  or between x1 and 1). 

5. Conclusion 

In  this paper we report an evaluation of the function q ( x ) ,  magnetisation (m) and 
free energy ( F )  by solving the system of self-consistent equations (7)-(11). We prove 
that there are massless modes. It provides further evidence that the Parisi solution 
may be an exact solution of the Sherrington-Kirkpatrick model of a spin glass. We 
showed an equivalence of the solution determined by equations (7)-( 11) to the results 
obtained by Sompolinsky (1981) in the framework of the dynamic approach. 

We hope that equations (7)-( 11) can be successfully used to investigate magnetic 
and thermodynamic properties of the king spin glass at all temperatures T <  T, and 
H z 0 .  

Appendix 

To derive equations (8)-(11) we use a simple algebraic method proposed by Duplantier 
(1981). In the framework of this method the next representation of the value G (see 
equation ( 5 ) )  

a a  
G = (exp $6' Qap - -)( 2 cosh ha)  

-.p ah, ahp 

and the trivial identity 

are used. Moreover we supposed Q,, = qo. The generic matrix 6 can be considered 
as the limit of the series 
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In the continuous limit n -+ 0, mi = x E [0, 11, mi+l /mi  = (x -dx)/x and the recursion 
relation becomes 

g ( x ,  h )  = [exp $Pz dq(x)(d2/dh2)][g(x +dx, h)]l-dx/x, 
I303 I ('42) 
13032 +(I, h )  = [exp ;P2 dq(x)(d2/dh2)l{cp'(x +dx, h ) [ g ( x  +dx, h)1-""/1 

with g(1, h )  = 2 cosh h,  +( l ,  h )  = 2 sinh h. Equations (A2) are equivalent to 

Substituting g = exp(xf) and 

show that the ith term of the series ( A l )  has the form 

= cp exp(xf) we obtain equations (10) and (1  1) .  
Let us consider the calculation of the quantity a2G/8h,dhp(qap = q l ) .  It is easy to 

(A5) / m , - 2  
Jm,(ml+i ,  h)=$'(mL, hXg(m1, h)Iml+' 

(A5) immediately gives the recursion: 

Jm,(ml+2, h )  =[exp ~ 2 ~ 1 + z ( d 2 / d h 2 ) I { ~ m , ( ~ l + i ,  h ) [ g ( m l + l ,  h) lm,+2 'm*+ ' -  },. . . , 
q1 =Jm,(nl h )  = [exp ~P2qK(d2/dh2)I{Jm,(mK, h)[g(mK, h)l"'mK-ll. 

In  the limit n + 0 the recursion relation (A6) becomes 

(-46) 

&(Y,  h )  = [exp ~ P 2 d q ( y ) ( d 2 / d h 2 ) l { ~ ~ ( y  +dy, h)[g(y +dy, h)l-dy'y) (A7) 
with GX(x, h )  = G 2 ( x ,  h ) / g ( x ,  h) .  Equation (A7) is equivalent to (A4). Substituting 
J x ( y ,  h )  = $ ( y ,  h )  exp[yf(y, h)], for the function 4, we obtain equation (11)  with the 
boundary condition +bx(x, h )  = cp2(x, h ) .  
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